AQUASOL

Analyzing Waters... Anytime... Anywhere...
\triangleq PORTABLE \triangleq baseld on proven mithods \triangleq accurate
气 backeid by sound chemical researcil
气 E ECONOMICAL
\triangleq RAPID $\quad \triangleq$ RRLIABLIL

AE 109
CONSTRUCTION WATER TEST KIT

CONSTRUCTION WATER TEST KIT

AE 109
Water is one of the most important component in construction and is required for the preparation of mortar, mixing of cement concrete and for curing work etc. The quality of water used has a direct impact on the strength of the mortar and cement concrete in the construction work. Impurities in water can cause metal corrosion, introduce unwanted silt and clay into the concrete, adversely affect the hardening process of concrete and also reduce the strength by even 25%. Thus the need to ensure the quality of water used during construction is vital.

AQUASOL AE 109 is specially designed for Construction Water Analysis.

CONSTRUCTION WATER TEST KIT

Index

Parameter Page No.

1. Calcium hardness 4
2. Chloride 5
3. Sulphate 6
4. Alkalinity 7
5. Acidity 8
6. pH Refer AM-P-PH Impact Leaflet
7. Total dissolved solid Refer AM-P-EC/TDS Impact Leaflet

CALCIUM HARDNESS

Range : $25-500$ PPM as CaCO_{3}

Directions for use :

1. Take 10 ml of water sample to be tested in the test jar.
2. Add one spoonful (provided herewith) of $\mathbf{C H} 2$.
3. Mix well to dissolve.
4. Then add 10 drops of $\mathbf{C H} 1$.
5. Now drop wise* add TH5 counting the number of drops while mixing until the colour changes from red to violet.

Calculations:

Calcium Hardness as ppm CaCO $3=25 \times$ (No. of drops of TH5)

CHLORIDE

Range : 10 - 200 PPM, $50-1000$ PPM and upto 2000 PPM as CI

Directions for use :

1. Take 10 ml . of water sample to be tested in the test jar.
2. Add one spoonful (provided herewith) of CD1.
3. Mix well to dissolve.
4. Then add CD2 drop by drop till the sample turns yellow.
5. Now drop wise* add CD3\#, counting the number of drops while mixing, until the colour changes from yellow to bluish violet.
\# If the expected chloride of the sample is more than 200 ppm , then use CD4 instead of CD3.

Calculations :

Chloride as ppm Cl $=10 \times$ (Number of drops of CD3)
$=50 \times$ (Number of drops of CD4)
For Chloride content more than 1000 ppm do the following:

1. Take 5 ml of water sample to be tested in the test jar. Add 5 ml of DM water (free from chloride) and mix.
2. Carry out the test as above using CD4 as a titrant.

Calculation:

Chloride as ppm Cl $=100 \times$ Number of drops of CD4.

SULPHATE

Range : $10-200$ PPM as SO_{4}

Directions for use :

1. Take 2 ml sample in Test jar with the help of syringe (provided herewith)
2. Dilute with Alcohol (Isopropyl alchohol AR/GR grade) up to the 10 ml mark. Mix well.
(Note : Since the Alcohol is inflammable in nature, it is not provided with the test kit)
3. Add one spoonful of NSP2. Mix well.
4. Now drop wise add NSP3 counting the number of drops while mixing until the yellow colour change to saffron red.

Calculations:

Sulphate as ppm SO $=10 \times$ (No. of drops of NSP3)

ALKALINITY

Range : 10-200 PPM, 50-1000 PPM as CaCO3

Directions for use :

1. Take 10 ml of water sample in the test jar. Add 2 drops of AK1. Mix well. If a pink colour does not appear, this indicates P Alkalinity is nil. Then proceed to step No. 4.
2. If a pink colour appears, this indicates presence P Alkalinity
3. Then drop wise* add AK2 counting the number of drops while mixing until the pink colour disappears (N drops).
4. To this solution add one spoonful (provided herewith) of AK4. The sample will turn green.
5. Now drop wise* add AK2\# counting the number of drops while mixing. Until the colour changes from green to reddish violet (N1 drops).
\# if the expected Alkalinity is more than 200 ppm, then use AK3L instead of AK2.

Calculations:

P Alkalinity ppm as $\mathrm{CaCO}_{3} \quad=10 \mathrm{X}(\mathrm{N}$ of Drops of AK2)
M or Total Alkalinity ppm as $\mathrm{CaCO}_{3}=10 \mathrm{X}(\mathrm{N}+\mathrm{N} 1$ drops of AK2)
P Alkalinity ppm as $\mathrm{CaCO}_{3} \quad=50 \times(\mathrm{N}$ drops of AK3L)
M or Total Alkalinity ppm as $\mathrm{CaCO}_{3}=50 \mathrm{X}(\mathrm{N}+\mathrm{N} 1$ drops of AK3L)

ACIDITY

RANGE : $10-200$ PPM, $50-1000$ PPM as CaCO_{3}

Directions for use :

1. Take 10 ml of water sample to be tested in the test jar.
2. Add 2 drops of AK1 mix well to dissolve.
3. Now drop wise add AC2 \# counting the number of drops while mixing until the colour changes from colourless to pink.

* If the expected Acidity is more than 200 ppm, then use AC 4 instead of AC 2.

Calculations :

Total Acidity ppm as $\mathrm{CaCO}_{3}=10 \times$ (Number of Drops of AC2)
$=50 \mathrm{X}$ (Number of Drops of AC4)

AQUASOL Systems are available for

almost all water parameters in individual packs as well as combination packs depending on the specific requirements of different industries, such as, 'Boiler Water', 'Cooling Water', 'Construction Industry', 'Swimming Pools', 'R.O. Water', etc. Also for any specific requirements,
Custom Made AQUASOL Systems can be devised both as Individual or Combination Kits.

Aquasol Combi Kits: Application in Different Water Systems

Water Systems	Industries	Applications	Parameters		
Boiler	Pulp \& Paper, Textile, Steel, Chemical Manufacturing Units, Fertilizers, Refineries, Sugar, Thermal Power, Feed Water,	Raw Water, Softener, Blowdown Water,	Total Hardness, Calcium Hardness, Alkalinity, pH, Silica, Phosphate, Tannin, Iron, Chloride, Sulphite,		
Cooling Systems	Pulp \& Paper, Textile, Steel, , Chemical Manufacturing Units, Fertilizers, Sugar, Refineries, Thermal Power Stations, Engineering Units	Make-up Water, Recirculating Water, Basin Water	Total Hardness, pH, Chloride, Alkalinity, Calcium Hardness, Silica, Free Chlorine, Nitrite, Phosphate/Phosphonate, Zinc, Molybdate		
Ro Water					
Osmosis (RO) Plants				\quad	Feed Water and
:---					
Swimming					
Pool					

